Step of Proof: ite_rw_true
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
ite
rw
true
:
T
:Type,
b
:
,
x
,
y
:
T
. (
b
)
(if
b
then
x
else
y
fi =
x
)
latex
by
InteriorProof
((((RepD)
CollapseTHENM (SplitOnConclITE))
)
CollapseTHEN (
CollapseTHEN (
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t
CollapseTHEN (
) inil_term)))
latex
C
.
Definitions
,
t
T
,
False
,
P
Q
,
A
,
x
:
A
.
B
(
x
)
Lemmas
not
wf
,
bnot
wf
,
assert
wf
,
bool
wf
origin